A systems biology approach to modeling vibrio cholerae gene expression under virulence-inducing conditions.
نویسندگان
چکیده
Vibrio cholerae is a Gram-negative bacillus that is the causative agent of cholera. Pathogenesis in vivo occurs through a series of spatiotemporally controlled events under the control of a gene cascade termed the ToxR regulon. Major genes in the ToxR regulon include the master regulators toxRS and tcpPH, the downstream regulator toxT, and virulence factors, the ctxAB and tcpA operons. Our current understanding of the dynamics of virulence gene expression is limited to microarray analyses of expression at selected time points. To better understand this process, we utilized a systems biology approach to examine the temporal regulation of gene expression in El Tor V. cholerae grown under virulence-inducing conditions in vitro (AKI medium), using high-resolution time series genomic profiling. Results showed that overall gene expression in AKI medium mimics that of in vivo studies but with less clear temporal separation between upstream regulators and downstream targets. Expression of toxRS was unaffected by growth under virulence-inducing conditions, but expression of toxT was activated shortly after switching from stationary to aerating conditions. The tcpA operon was also activated early during mid-exponential-phase growth, while the ctxAB operon was turned on later, after the rise in toxT expression. Expression of ctxAB continued to rise despite an eventual decrease in toxT. Cluster analysis of gene expression highlighted 15 hypothetical genes and six genes related to environmental information processing that represent potential new members of the ToxR regulon. This study applies systems biology tools to analysis of gene expression of V. cholerae in vitro and provides an important comparator for future studies done in vivo.
منابع مشابه
Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon.
Epidemic strains of Vibrio cholerae O1 are divided into two biotypes, classical and El Tor. In both biotypes, regulation of virulence gene expression depends on a cascade in which ToxR activates expression of ToxT, and ToxT activates expression of cholera toxin and other virulence genes. In the classical biotype, maximal expression of this ToxR regulon in vitro occurs at 30 degrees C at pH 6.5 ...
متن کاملDifferences in gene expression between the classical and El Tor biotypes of Vibrio cholerae O1.
Differences in whole-genome expression patterns between the classical and El Tor biotypes of Vibrio cholerae O1 were determined under conditions that induce virulence gene expression in the classical biotype. A total of 524 genes (13.5% of the genome) were found to be differentially expressed in the two biotypes. The expression of genes encoding proteins required for biofilm formation, chemotax...
متن کاملBicarbonate Induces Vibrio cholerae virulence gene expression by enhancing ToxT activity.
Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera, a severe diarrheal illness. The two biotypes of V. cholerae O1 capable of causing cholera, classical and El Tor, require different in vitro growth conditions for induction of virulence gene expression. Growth under the inducing conditions or infection of a host initiates a complex regulatory cascade that result...
متن کاملGenetic Diversity of ctxB Gene Among Classical O1 and El Tor Strains of Vibrio cholerae using High-Resolution Melting Curve Analysis
Background & Objective: Vibrio cholerae is a natural inhabitant of the environment and causes severe diarrhea ailments (cholera) that affects thousands of people each year worldwide. The most important virulence factors of this pathogen are cholera toxin (cholera toxin CT) and Type IV...
متن کاملThe transcriptional regulator VqmA increases expression of the quorum-sensing activator HapR in Vibrio cholerae.
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. A number of environmental stimuli regulate virulence gene expression in V. cholerae, including quorum-sensing signals. At high cell densities, quorum sensing in V. cholerae invokes a series of signal transduction pathways in order to activate the expression of the master regulator HapR, which then represses the viru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 192 17 شماره
صفحات -
تاریخ انتشار 2010